Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1660, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238544

RESUMO

The patch-clamp technique has revolutionized neurophysiology by allowing to study single neuronal excitability, synaptic connectivity, morphology, and the transcriptomic profile. However, the throughput in recordings is limited because of the manual replacement of patch-pipettes after each attempt which are often also unsuccessful. This has been overcome by automated cleaning the tips in detergent solutions, allowing to reuse the pipette for further recordings. Here, we developed a novel method of automated cleaning by sonicating the tips within the bath solution wherein the cells are placed, reducing the risk of contaminating the bath solution or internal solution of the recording pipette by any detergent and avoiding the necessity of a separate chamber for cleaning. We showed that the patch-pipettes can be used consecutively at least ten times and that the cleaning process does not negatively impact neither the brain slices nor other patched neurons. This method, combined with automated patch-clamp, highly improves the throughput for single and especially multiple recordings.


Assuntos
Detergentes , Ultrassom , Neurônios/fisiologia , Neurofisiologia , Técnicas de Patch-Clamp
2.
Front Cell Neurosci ; 17: 1258773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780205

RESUMO

Retinal degeneration is one of the main causes of visual impairment and blindness. One group of retinal degenerative diseases, leading to the loss of photoreceptors, is collectively termed retinitis pigmentosa. In this group of diseases, the remaining retina is largely spared from initial cell death making retinal ganglion cells an interesting target for vision restoration methods. However, it is unknown how downstream brain areas, in particular the visual cortex, are affected by the progression of blindness. Visual deprivation studies have shown dramatic changes in the electrophysiological properties of visual cortex neurons, but changes on a cellular level in retinitis pigmentosa have not been investigated yet. Therefore, we used the rd10 mouse model to perform patch-clamp recordings of pyramidal neurons in layer 2/3 of the primary visual cortex to screen for potential changes in electrophysiological properties resulting from retinal degeneration. Compared to wild-type C57BL/6 mice, we only found an increase in intrinsic excitability around the time point of maximal retinal degeneration. In addition, we saw an increase in the current amplitude of spontaneous putative inhibitory events after a longer progression of retinal degeneration. However, we did not observe a long-lasting shift in excitability after prolonged retinal degeneration. Together, our results provide evidence of an intact visual cortex with promising potential for future therapeutic strategies to restore vision.

3.
Mol Ther Nucleic Acids ; 32: 857-871, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37273786

RESUMO

Myotonic dystrophy type 1 (DM1) is a neuromuscular disease that originates from an expansion of CTG microsatellites in the 3' untranslated region of the DMPK gene, thus leading to the expression of transcripts containing expanded CUG repeats (CUGexp). The pathophysiology is explained by a toxic RNA gain of function where CUGexp RNAs form nuclear aggregates that sequester and alter the function of MBNL splicing factors, triggering splicing misregulation linked to the DM1 symptoms. There is currently no cure for DM1, and most therapeutic strategies aim at eliminating CUGexp-DMPK transcripts. Here, we investigate a DMPK-promoter silencing strategy using CRISPR interference as a new alternative approach. Different sgRNAs targeting the DMPK promoter are evaluated in DM1 patient muscle cells. The most effective guides allowed us to reduce the level of DMPK transcripts and CUGexp-RNA aggregates up to 80%. The CUGexp-DMPK repression corrects the overall transcriptome, including spliceopathy, and reverses a physiological parameter in DM1 muscle cells. Its action is specific and restricted to the DMPK gene, as confirmed by genome-wide expression analysis. Altogether, our findings highlight DMPK-promoter silencing by CRISPRi as a promising therapeutic approach for DM1.

4.
Cereb Cortex ; 33(10): 5875-5884, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36453454

RESUMO

Eye-opening is a critical point for laminar maturation of pyramidal neurons (PNs) in primary visual cortex. Knowing both the intrinsic properties and morphology of PNs from the visual cortex during development is crucial to contextualize the integration of visual inputs at different age stages. Few studies have reported changes in intrinsic excitability in these neurons but were restricted to only one layer or one stage of cortical development. Here, we used in vitro whole-cell patch-clamp to investigate the developmental impact on electrophysiological properties of layer 2/3 and layer 5 PNs in mouse visual cortex. Additionally, we evaluated the morphological changes before and after eye-opening and compared these in adult mice. Overall, we found a decrease in intrinsic excitability in both layers after eye-opening which remained stable between juvenile and adult mice. The basal dendritic length increased in layer 5 neurons, whereas spine density increased in layer 2/3 neurons after eye-opening. These data show increased number of synapses after onset of sensory input paralleled with a reduced excitability, presumably as homeostatic mechanism. Altogether, we provide a database of the properties of PNs in mouse visual cortex by considering the layer- and time-specific changes of these neurons during sensory development.


Assuntos
Córtex Visual Primário , Córtex Visual , Camundongos , Animais , Células Piramidais/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Fenômenos Eletrofisiológicos , Dendritos/fisiologia
5.
Neuropharmacology ; 197: 108722, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273387

RESUMO

Although several ionic mechanisms are known to control rate and regularity of the slow pacemaker in dopamine (DA) neurons, the core mechanism of pacing is controversial. Here we tested the hypothesis that pacemaking of SNc DA neurons is enabled by an unconventional conductance. We found that 1-(2,4-xylyl)guanidinium (XG), an established blocker of gating pore currents, selectively inhibits pacemaking of DA neurons. The compound inhibited all slow pacemaking DA neurons that were tested, both in the substantia nigra pars compacta, and in the ventral tegmental area. Interestingly, bursting behavior was not affected by XG. Furthermore, the drug did not affect fast pacemaking of GABAergic neurons from substantia nigra pars reticulata neurons or slow pacemaking of noradrenergic neurons. In DA neurons, current-clamp analysis revealed that XG did not appear to affect ion channels involved in the action potential. Its inhibitory effect persisted during blockade of all ion channels previously suggested to contribute to pacemaking. RNA sequencing and voltage-clamp recordings yielded no evidence for a gating pore current to underlie the conductance. However, we could isolate a small subthreshold XG-sensitive current, which was carried by both Na+ and Cl- ions. Although the molecular target of XG remains to be defined, these observations represent a step towards understanding pacemaking in DA neurons.


Assuntos
Relógios Biológicos/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Guanidina/análogos & derivados , Guanidina/farmacologia , Mesencéfalo/efeitos dos fármacos , Animais , Neurônios GABAérgicos/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Substância Negra/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
6.
Mol Genet Genomic Med ; 9(2): e1588, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33507632

RESUMO

BACKGROUND: Myotonia congenita (MC) is a common channelopathy affecting skeletal muscle and which is due to pathogenic variants within the CLCN1 gene. Various alterations in the function of the channel have been reported and we here illustrate a novel one. METHODS: A patient presenting the symptoms of myotonia congenita was shown to bear a new heterozygous missense variant in exon 9 of the CLCN1 gene (c.1010 T > G, p.(Phe337Cys)). Confocal imaging and patch clamp recordings of transiently transfected HEK293 cells were used to functionally analyze the effect of this variant on channel properties. RESULTS: Confocal imaging showed that the F337C mutant incorporated as well as the WT channel into the plasma membrane. However, in patch clamp, we observed a smaller conductance for F337C at -80 mV. We also found a marked reduction of the fast gating component in the mutant channels, as well as an overall reduced voltage dependence. CONCLUSION: To our knowledge, this is the first report of a mixed alteration in the biophysical properties of hClC-1 consisting of a reduced conductance at resting potential and an almost abolished voltage dependence.


Assuntos
Canais de Cloreto/genética , Mutação de Sentido Incorreto , Miotonia Congênita/genética , Potenciais de Ação , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Canais de Cloreto/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico , Miotonia Congênita/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...